On the Equivalence of the Graph-Structural and Optimization-Based Characterizations of Popular Matchings

Yuga Kanaya, Kenjiro Takazawa Hosei University, Tokyo, Japan

Abstract

In a bipartite graph in which the vertices have preferences over their neighbors, a **popular matching** is a matching which does not lose in a majority vote against any matching. In the literature, we have a **graph-structural characterization** and an **optimization-based characterization** described by maximum-weight matchings. **A main contribution of this paper is a direct connection of the two characterizations**, which suggests a new interpretation of the graph-structural characterization in terms of the dual optimal solution for the maximum-weight matching problem.

House Allocation model (HA model)

- (A, H; E): Bipartite graph
- \succ_a : Preference of an applicant $a \in A$ over the houses in H
- $M, N \subseteq E$: Matchings in (A, H; E)
 - $M(a) \in H$: House matched to $a \in A$ by M
 - $\Delta(M, N) = \{a \in A \mid M(a) \succ_a N(a)\} \blacktriangleleft a \text{ prefers } M \text{ to } N$

Defn *M* is a **popular matching** if

 $\Delta(M,N) - \Delta(N,M) \ge 0$ for every matching N

• M_2 is not popular, because $\Delta(M_2, M_1) - \Delta(M_1, M_2) < 0$

• Then, how can we efficiently verify that M_1 is popular?

Graph-Structural Characterization

- $f(a) \in H$: House most preferred by $a \in A$
- $H_f = \bigcup_{a \in A} \{ f(a) \} = \{ h \mid \exists a \in A, h = f(a) \}$
- $s(a) \in H$: House in $H \setminus H_f$ most preferred by $a \in A$

Theorem [Abraham, Irving, Kavitha, Mehlhorn, 2007]

A matching M is popular if and only if

(GS1) Each $h \in H_f$ is matched by M, and

(GS2) Each $a \in A$ is matched to f(a) or s(a) by M

 M_1 satisfies **GS1,2** M_2 violates **GS2** M_3 violates **GS1**

• For simplicity, we add a last resort (least preferred house) $\ell(a)$ for each $a \in A$, to assume that each $a \in A$ is matched

Optimization-Based Characterization

• Given a matching M, define edge weights $w_M \in \{0,1,2\}^E$ by

$$w_M(a,h) = \begin{cases} 2 & \text{if } h \succ_a M(a) \\ 1 & \text{if } h = M(a) \\ 0 & \text{if } h \prec_a M(a) \end{cases}$$

Theorem [Biró, Irving, Manlove, 2010]

A matching M is popular if and only if

(Opt) M is a max-weight matching wrt w_M

 M_1 : Max-weight M_2 : Not max-weight M_3 : Not max-weight

Our Contribution Direct proof of (GS1)(GS2) ↔ (Opt)

Proof Sketch of (GS1)(GS2)→(OPT)

- **(Dual)** Minimize $\sum_{a \in A} y(a) + \sum_{h \in H} y(h)$ subject to $y(a) + y(h) \ge w_M(a,h)$ $\forall (a,h) \in E$ $y(h) \ge 0$ $\forall h \in H$
- Define $y \in \mathbb{R}^{A \cup H}$ by $y(a) = \begin{cases} 0 & \text{if } M(a) = f(a) \\ 1 & \text{if } M(a) = s(a) \end{cases}$ $y(h) = \begin{cases} 1 & \text{if } h \in H_f \\ 0 & \text{if } h \in H \setminus H_f \end{cases}$
- $\sum_{a \in A} y(a) + \sum_{h \in H} y(h) = |A|$, and hence y is an optimal solution of **(Dual)**

Corollary

Yet $w_M \in \{0,1,2\}^E$, (Dual) has a $\{0,1\}$ -optimal solution

Further Contribution

The same result for

- House Allocation model with Ties (HAT)
- Stable Matching model (SMI, two-sided preferences)
 - GS characterization due to [Huang, Kavitha 2013]

References

- D.J. Abraham, R.W. Irving, T. Kavitha, K. Mehlhorn: Popular matchings, SIAM J. Comput. 37(4), 1030-1045, 2007
- P. Biró, R.W. Irving, D.F. Manlove: Popular matchings in the marriage and roommates problems, Proc. 7th CIAC, LNCS 6078, 97–108, 2010
- C.-C. Huang, T. Kavitha: Popular matchings in the stable marriage problem, Inf. Comput. 222, 180–194, 2013