A Unified Model of Congestion Games with Priorities

Two-sided Markets with Ties, Finite and Non-affine Delay Functions, and Pure Nash Equilibria

Kenjiro Takazawa Hosei University, Tokyo

2025.02.28 WALCOM @ Chengdu

Congestion Game

Open Question We Solved

Congestion Game [Rosenthal 1973]

A model of **non-cooperative games**

Delay on the number *x* of players

- $e_1: 4 \cdot 3 = 12$
- $e_2: 5 \cdot 1 = 5$
- $e_3: 1^2 = 1$

Pure Nash equilibrium (PNE)

No player can decrease her delay by only changing her resource

- A standard model in the analysis of PNE in non-cooperative games
- Also known as routing game or selfish routing

Congestion Game with Priorities

[Ackermann, Goldberg, Mirrokni, Röglin, Vöcking, 2008]

A common generalization

- Congestion games
- Two-sided markets

Resources have **priorities** over the players

• $e_1: i \sim j \prec k$ Preferring *i* and *j* to *k*

Delay imposed by e_1

- $i: 4 \cdot 2 = 8$
- $j: 4 \cdot 2 = 8$
- **k**: +∞

Open Question by Ackermann et al.

<u>Recap</u>

Less preferred players receive an infinite delay

caused by more preferred players

Open Question

How to design a model in which less preferred players receive **a large but finite delay** caused by more preferred players ?

Our Solution

- **Designing such a model** as a common generalization of another model
- Extending previous theorems on PNE

Priorities

• $e_1: i \sim j \prec k$ Preferring *i* and *j* to *k*

Delay by e_1 with delay func. 4x

• $i: 4 \cdot 2 = 8$

•
$$j: 4 \cdot 2 = 8$$

Previous Work

Congestion Game with Priorities Priority-Based Affine Congestion Game

Congestion Game (Formal)

$G = (N, E, (\mathcal{S}_i)_{i \in N}, (d_e)_{e \in E})$

- N: Players
- E: Resources
- S_i : **Strategy space** of player $i \in N$
 - $S_i \in S_i$: **Strategy** of player $i \in N$
- $S = (S_1, ..., S_n)$: State
 - $N_e(S)$: Players choosing e
 - $n_e(\boldsymbol{S}) = |N_e(\boldsymbol{S})|$
- d_e : **Delay function** of resource $e \in E$

Delay on $i \in N$ in a state S $\gamma_i(S) = \sum_{e \in S_i} d_e(n_e(S))$

Classical Theorems on Congestion Games

Theorem [Rosenthal 1973]

Every congestion game admits an exact potential functionPossesses a PNE

• **Exact potential function** Φ defined on the set of states

 $\Phi(\mathbf{S}_{-i}, S'_i) - \Phi(\mathbf{S}) = \gamma_i(\mathbf{S}_{-i}, S'_i) - \gamma_i(\mathbf{S}) \text{ for each } i \in N, \mathbf{S}, S'_i \in S_i$

- A state minimizing the potential Φ is a PNE
- Suffices to define Φ by

 $\Phi(\mathbf{S}) = \sum_{e \in E} \sum_{\ell=1}^{n_e(\mathbf{S})} d_e(\ell)$

Theorem [Monderer, Shapley 1996] Every exact potential game is a congestion game.

Congestion Game with Priorities (Formal)

$G = (N, E, (\mathcal{S}_i)_{i \in N}, (d_e)_{e \in E}, (p_e)_{e \in E})$

 $p_e: N \to \mathbb{Z}$: **Priority function** of resource *e*

• $p_e(i) < p_e(j)$: *e* prefers player *i* to *j*

For a state *S* and a resource *e*,

• $p_e^*(S) = \min\{p_e(i): i \in N_e(S)\}$

•
$$n_e^{p_e^*(S)} = |\{i \in N_e(S) : p_e(i) = p_e^*(S)\}|$$

Delay on $i \in N_e(S)$ by e is

- $d_e(n_e^{p_e^*(S)})$ if $p_e(i) = p_e^*(S)$
- $+\infty$ if $p_e(i) > p_e^*(S)$

Results by [Ackermann et al. 2008]

Theorem [Ackermann et al. 2008]

A **singleton** congestion game with priorities

- is a potential game,
- and hence possess a PNE

More results by [Ackermann et al. 2008]

- Singleton, identical priority function p_e(·)
 → PNE is attained by poly. number of better-response dynamics
- Singleton, player-specific delay function d_e(·)
 → PNE can be computed in poly. time
- Extension from singleton game to **matroid game**

Q. Can we get rid of the **infinite delay**? Delay on *i* is $+\infty$ if $p_e(i) > p_e^*(S)$

Each strategy is a singleton

Larger class

Strategy space

= Base family

Priority-Based Affine Congestion Game [Bilò, Vinci 2023]¹¹

$G = (N, E, (\mathcal{S}_i)_{i \in N}, p, (\alpha_e, \beta_e)_{e \in E})$

- *p*: Priority function of **all resources**
- $(\alpha_e, \beta_e) \in \mathbb{R}^2$ defines the delay func. of e
 - $n_e^{<p(i)}(S) = |\{j \in N_e(S): p(j) < p(i)\}|$
 - Delay on $i \in N_e(S)$ by e is

More preferred

 $\mathcal{L}_{\rho}^{< p(l)}(S)$ players

$$\alpha_e \cdot \left(n_e^{$$

Equally preferred

players

Results by [Bilò and Vinci 2023]

Theorem [Bilò and Vinci 2023]

A priority-based affine congestion game possesses a **PNE**

More results on Price of Anarchy and Price of Stability

Difference from [Ackermann et al. 2008]

- All resources have the identical priority function $p(\cdot)$
- A specific kind of **affine delay function**:

$$\alpha_e \cdot \left(n_e^{$$

<u>Q.</u> Can we get rid of the **identical priorities** and **affine delay functions**?

Our Model

- Congestion Game with Priorities
- Priority-Based Affine Congestion Game

Priority-Based Congestion Game

Our Model: Priority-Based Congestion Game

$G = (N, E, (\mathcal{S}_i)_{i \in N}, (d_e)_{e \in E}, (p_e)_{e \in E})$

Differences from the previous models

- $d_e: \mathbb{Z} \times \mathbb{Z} \to \mathbb{R}$: Bivariate delay function
 - The delay on *i* by *e* is $d_e\left(n_e^{< p_e(i)}(S), n_e^{p_e(i)}(S)\right)$

[Ackermann et al. 2008]

•
$$d_e(n_e^{p_e^*(S)})$$
 if $p_e(i) = p_e^*(S)$

• $+\infty$ if $p_e(i) > p_e^*(S)$

$$\frac{[\text{Bil}\grave{o} \text{ and Vinci 2023}]}{\alpha_e \cdot \left(n_e^{< p(i)}(\boldsymbol{S}) + \frac{n_e^{p(i)}(\boldsymbol{S}) + 1}{2}\right) + \beta_e}$$

The delay func. of [Ackermann et al. 2008] is obtained by defining $d'_e(x, y)$ by

•
$$d_e(y)$$
 if $x = 0$

•
$$+\infty$$
 if $x \ge 1$

Assumption on the Delay Functions

<u>Our result</u>

Extension of the theorems of [Ackermann et al. 2008] to our model under an assumption on the delay functions

Assumption on the delay functions $d_e: \mathbb{Z} \times \mathbb{Z} \to \mathbb{R}$:

- 1. $d_e(x, y) \le d_e(x', y)$ if x < x'
- 2. $d_e(x, y) \le d_e(x, y')$ if y < y'

3.
$$d_e(x, y) \le d_e(x + y - 1, 1)$$

Theorems on PNE

[Ackermann et al.]	Identical Priorities	General Priorities
<u>Non-player-specific</u> <u>Delay</u>	Poly. better-response dynamicsSingleton gameMatroid game	Potential gameSingleton gameMatroid game
<u>Player-specific</u> <u>Delay</u>		Polynomial AlgorithmSingleton gameMatroid game

Our Results	Identical Priorities	General Priorities
<u>Non-player-specific</u> <u>Delay</u>	Poly. better-response dynamicsSingleton gameMatroid game	Potential gameSingleton gameMatroid game
<u>Player-specific</u> <u>Delay</u>	Poly. better-response dynamicsSingleton gameMatroid game	Existence of PNESingleton gameMatroid game

One Proof

<u>**Theorem</u>** A priority-based singleton congestion game is a **potential game**, and hence possess a **PNE**</u>

- **<u>Proof</u>** Define a **potential** $\Phi(S) \in (\mathbb{R} \times \mathbb{Z})^n$ of $S = (e_1, ..., e_n)$
- Resource *e* contributes the following $n_e(S)$ vectors in $\mathbb{R} \times \mathbb{Z}$
 - $(d_e(0,1), q_1), (d_e(0,2), q_1), \dots, (d_e(0, n_e^{q_1}(S)), q_1), \dots, (d_e(0, n_e^{q_1}(S)), q_1), \dots, (d_e(0, 1), q_1), \dots, (d_e(0, 2), q_1), \dots, (d_e(0, 2$
 - $(d_e(n_e^{<q_k}(S), 1), q_k), (d_e(n_e^{<q_k}(S), 2), q_k), \dots, (d_e(n_e^{<q_k}(S), n_e^{q_1}(S)), \dots, (d_e(n_e^{<q_k}(S), n_e^{q_1}(S))), \dots, (d_e(n_e^{<q_k}(S), n_e^{q_1}(S))), \dots, (d_e(n_e^{<q_k}(S), n_e^{q_1}(S))), \dots, (d_e(n_e^{<q_k}(S), n_e^{q_1}(S))))$
 - $\left(d_e\left(n_e^{\leq q_\ell}(\boldsymbol{S}), 1\right), q_\ell\right), \left(d_e\left(n_e^{\leq q_\ell}(\boldsymbol{S}), 2\right), q_\ell\right), \dots, \left(d_e\left(n_e^{\leq q_\ell}(\boldsymbol{S}), n_e^{q_\ell}(\boldsymbol{S})\right), q_\ell\right), \dots\right)$
 - where $q_1 < q_2 < \cdots < q_\ell$ is the priority values of the players in $N_e(S)$
- A better response from *e* to *f* of *i* lexicographically decreases $\Phi(S)$
 - f newly contributes $\left(d_f\left(n_f^{< p_f(i)}(\boldsymbol{S}), n_f^{p_f(i)}(\boldsymbol{S}) + 1\right), p_f(i)\right)$
 - This is lex. smaller than those disappeared, due to the fact that it is a better response and d_f satisfies Assumptions 1-3.

Conclusion

Summary and Future Work

Our contribution

A new model of congestion games with priorities

- Common generalization of the models of [Ackermann et al. 2008] and [Bilò and Vinci 2023]
- Solution to the open question of [Ackermann et al. 2008]
- Extending the theorems on PNE

Future work

- Complexity analysis of computing a PNE
- Analysis on **Price of Anarchy** and **Price of Stability**
- Weakening the assumption of the delay functions