# Finding a maximum 2-matching excluding prescribed cycles in bipartite graphs

### Kenjiro Takazawa Hosei University

MFCS 2016 @ AGH University, Kraków August 22-26, 2016

## 2-matching / 2-factor



2

# Hamilton Cycle: Restricted 2-factor

- > 2-factor of **one cycle**
- > 2-factor w/o  $C_k$  for  $\forall k \leq n-1$
- > 2-factor w/o subtour in ∀U⊊V
  - **Subtour** in U = 2-factor in G[U]

### ➢ 2-factor covering ∀edge cut

- F\* covers C
- $F_1$ ,  $F_2$  do not cover C







Hamilton cycle F\*





### **Our Topic: Restricted 2-matchings**



### Contents

• Introduction: 2-matching and Hamilton cycle

### • Previous Work

- Subtour Elimination
- $\succ C_{\leq k}$ -free 2-matching
- A-covering 2-factor
- Our Framework: *U*-feasible 2-matching
  - Min-max Theorem
  - Combinatorial Algorithm
  - Decomposition Theorems

### Conclusion

## **Subtour Elimination**

SubtourElimination Relaxation for TSPmin.cxsub. to $x(\delta v) = 2$  $v \in V$  $x(E[U]) \leq |U| - 1$  $\oslash \subseteq U \subsetneq V$  $0 \leq x(e) \leq 1$  $e \in E$ 

- Standard LP relaxation for **TSP**
- 4/3-Conjecture: The integrality gap is 4/3 [Goemans '95] etc.

$$x \in \mathbf{R}^{E}: x(e) = \begin{bmatrix} 1 & (e \in F) \\ 0 & (e \notin F) \end{bmatrix}$$
$$x(E') = \sum_{e \in E'} x(e)$$

[Held, Karp '70]

δν

[Dantzig, Fulkerson, Johnson '54]

# C<sub>≤k</sub>-free 2-matching



#### Def.

2-matching F is  $C_{\leq k}$ -free  $\Leftrightarrow F$  excludes cycles of length  $\leq k$ 

#### Problem

● Find a *C*<sub>≤*k*</sub>-free 2-factor

● Find a **max.** C<sub>≤k</sub>-free 2-matching

*k* = 2 → 2-matching problem *k* = n-1 → Hamilton cycle problem

Application

Approximation algorithms for

- Graph-TSP
- Min. 2-edge connected subgraph



# Complexity: Max $C_{\leq k}$ -free 2-matching

|                                                                                                                                              | General Graph | Bipartite Graph                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------------------------------------------|
| $k \ge n/2$                                                                                                                                  | NP-hard       | NP-hard                                                 |
| $k \ge 6$                                                                                                                                    | NP-hard*1     | NP-hard*3                                               |
| <i>k</i> = 5                                                                                                                                 | NP-hard*1     |                                                         |
| <i>k</i> = 4                                                                                                                                 | Open          | <b>P</b> *4                                             |
| <i>k</i> = 3                                                                                                                                 | <b>P</b> *2   |                                                         |
| <i>k</i> = 2                                                                                                                                 | Ρ             | Ρ                                                       |
| <ul> <li>*1: [Papadimitriou '78]</li> <li>*2: [Hartvigsen '84]</li> <li>*3: [Geelen '99]</li> <li>*4: [Hartvigsen '06], [Pap '07]</li> </ul> |               | C <sub>≤4</sub> -free 2-matching<br>in bipartite graphs |
|                                                                                                                                              |               | > Well-solved                                           |

> Rich structure

# Theory of C<sub>≤4</sub>-free 2-matching

- C<sub>≤4</sub>-free 2-matchings in Bipartite Graphs: Classical Matching Theory is Extended
  - Min-max theorem [Király '99][Frank '03]
    - Kőnig, Tutte-Berge
  - Combinatorial algorithm [Hartvigsen '06][Pap '07]
    - Edmonds
  - Decomposition theorem [T. '15]
    - Dulmage-Mendelsohn, Edmonds-Gallai
- ♦ Max. Weight  $C_{\leq 4}$ -free 2-matching
  - NP-hard in bipartite graphs
  - Positive results for a certain class
    - LP-formulation w/ dual integrality [Makai '07]
      - Cunningham-Marsh
    - Combinatorial algorithm [T. '08]
    - Discrete convexity [Kobayashi, Szabó, T.: '12]





# **A-covering 2-factor**

**Def.**  $A \subseteq \mathbb{Z}$ 

### 2-factor F is A-covering

 $\stackrel{\text{def}}{\Leftrightarrow} F \text{ intersects every } k\text{-edge cut } \forall k \in A$ 

• Hamilton cycle =  $\mathbb{Z}$  -covering 2-factor





BI**T.** '131

- 2-edge connected cubic graph:
  - {3,4}-covering 2-factor exists [Kaiser, Škrekovski '08], and can be found in O(n<sup>3</sup>) time [Boyd, Iwata, T. '13]
  - Min-weight {3}-covering 2-factor in O(n<sup>3</sup>) time [BIT. '13]
- Graphs w/o **{4,5}-covering 2-factor** [Čada, Chiba, Ozeki, Vrána, Yoshimoto '13]
- Application: Approximation of min. 2-edge connected subgraph

### Contents

• Introduction: 2-matching and Hamilton cycle

### • Previous Work

- Subtour Elimination
- $\succ C_{\leq k}$ -free 2-matching
- A-covering 2-factor
- Our Framework: *U*-feasible 2-matching
  - Min-max Theorem
  - Combinatorial Algorithm
  - Decomposition Theorems

### Conclusion

## Our Framework: U-feasible 2-matching



12

≻ *A*-covering 2-factor:  $\mathcal{U} = \{U \subseteq V : |\delta U| \in A\}$ 

## **Our Goal: Poly. Solvable Class**

#### Question

When is the problem solved in poly. time ?

#### • Known Facts:

- >  $\mathcal{U} = 2^{V} \setminus \{V\}$ : **NP-hard** [Hamilton cycle]
- $\succ U = \{U: |U| \le 4\}$ , Bipartite: **P** [ $C_{\le 4}$ -free 2-matching]
- $\succ$  U={U: |δU|∈{3,4}}, 2-EC Cubic: P [{3,4}-covering 2-factor]
- Our Answer: Extend the C<sub>≤4</sub>-free case
   ➤ U={U: G[U] is Hamilton-laceable}, Bipartite

### Polynomial in n, m, γ

- $\geq$   $\gamma$ : Time for determining  $\mathcal{U}$ -feasibility
- $\succ$  | $\mathcal{U}$ | might be exponential
- $\succ \mathcal{U}$  is given implicitly

# Hamilton-Laceable Graphs

### Def.

[Simmons '78]

Bipartite graph  $G = (V^+, V^-; E)$  is a Hamilton-Laceable  $\Leftrightarrow$  $\succ$   $|V^+| = |V^-|$ ,  $\forall u \in V^+$ ,  $v \in V^-$ ,  $\exists$  Hamilton path from u to v  $\succ$   $|V^+| = |V^-| + 1$ ,  $\forall u, v \in V^+$ ,  $\exists$  Hamilton path from u to v

- *K*<sub>*t*,*t*</sub> or *K*<sub>*t*+1,*t*</sub> with **≤t-2** edges deleted [Simmons '78] ▷ C<sub>4</sub>
  - $\succ$  **C**<sub>6</sub> with ≥2 chords







t

- *d*-dimensional rectangular lattice
  - Except for  $2 \times r$ ,  $3 \times 2r$  (d=2) [Simmons '81]
  - O(dn) edges

### **Our Results**

#### Assumption

G: **Bipartite** G[U] is **Hamilton-laceable**  $\forall U \in \mathcal{U}$ 

#### Results

- Min-max Theorem
- Combinatorial Algorithm
- Decomposition Theorems

[Király '99] [Hartvigsen '06][Pap '07] [**T.** '15]

### Extension of $C_{\leq 4}$ -free 2-matching Theory

**Subtour Elimination** for  $U \in U$ 

**Def.** 2-matching *F* is a *U*-feasible  $\Leftrightarrow$  |*F*[*U*]|  $\leq$  |*U*| - 1  $\forall U \in \mathcal{U}$ 

Problem Find a max. *U*-feasible 2-matching

# **Algorithm Sketch**

- Why Hamilton-laceable graphs?
   Shrinking technique works!
  - > Nonbipartite matching : Factor-critical graph [Edmonds '65]



```
Matching covering U-v
```

Our problem: Hamilton-laceable graph



# **Algorithmic Results**

### G: Bipartite

#### Theorem

If G[U] is Hamilton-laceable  $\forall U \in \mathcal{U}$ ,

max. *U*-feasible 2-matching is found in  $O(n^3\gamma + n^2m)$  time

If G[C] is Hamilton-laceable  $\forall$  cycle C of length  $\leq k$ , max.  $C_{\leq k}$ -free 2-matching is found in  $O(kn^3 + n^2m)$  time

#### Corollary

**Max. 2-matching** excluding  $C_4$  and  $C_6$  with  $\ge 2$  chords is found in  $O(n^2m)$  time

In every *d*-regular bipartite graph with  $d \ge 4$ , a **2-factor** excluding  $C_4$  and  $C_6$  with  $\ge 2$  chords exists and can be found in  $O(n^2m)$  time

> First positive results for  $C_{\leq 6}$ -free 2-matching

### **Min-Max Theorem**

#### Theorem

 $\max \{|F| : F \text{ is a } \mathcal{U}\text{-feasible 2-matching} \}$  $= \min\{|V|+|X| - q(X) : X \subseteq V\}$ 

 $q(X) = #{Component C in G[\overline{X}] : V(C) \in U}$ 

#### Theorem [Király '99]

 $\max \{|M| : M \text{ is a } C_4\text{-free 2-matching} \}$  $=\min\{|V|+|X| - q_4(X) : X \subseteq V\}$ 

$$q_4(X) = #\{0, 0-0, \bigcup_{x \to 0}^{x} \text{ in } G[\overline{X}]\}$$

Theorem [Tutte '47, Berge '58] max{|M| : M is a matching} =  $\frac{1}{2}$ min{|V| + |X| - odd(X):  $X \subseteq V$ }





### Contents

• Introduction: 2-matching and Hamilton cycle

### • Previous Work

- Subtour Elimination
- $\succ C_{\leq k}$ -free 2-matching
- A-covering 2-factor
- Our Framework: *U*-feasible 2-matching
  - Min-max Theorem
  - Combinatorial Algorithm
  - Decomposition Theorems

### Conclusion

## Conclusion

### *U***-feasible 2-matching**

- New framework of restricted 2-matching
- > Excludes **subtours** for  $\forall U \in \mathcal{U} \subset 2^{V}$
- Classical matching theory is extended if
  - *G* is bipartite and G[U] is Hamilton-laceable  $\forall U \in \mathcal{U}$

#### **Future Work**

- Weighted version
  - LP, Algorithm, Discrete Convexity
- Broader solvable class than Hamilton-laceable graphs

### > Application

Approximation for TSP etc.

## **END of Slides**